ROHS

High ESD-Protected 3.3V Dual-Channel RS232 transceiver

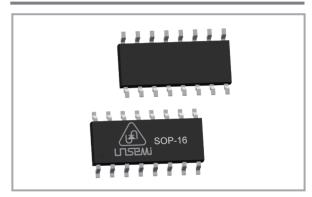
Features

- Supply voltages from 3V to 5.5V
- Dual Channel
- 120kbps Communication Rate
- 15kV HBM ESD-Protected
- ◆ 8kV IEC-4100-4-2 Contact Discharge

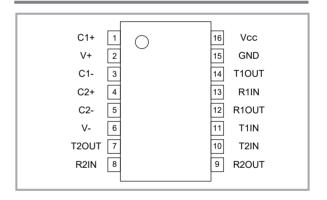
Applications

- ◆ Automobile electronics;
- Industrial Control Automation
- ♦ Security System;
- Instruments and apparatus;
- Road traffic control automation;
- Building automation system;

General Description


UN3232E is a 3.3V-power-supply, dual-channel,high ESD-protected, low-power RS-232 transceiver that fully meets the requirements of the TIA/EIA-232 standard.

UN3232E includes two drives and two receivers,with enhanced ESD protection function, reaching the protection capacity of HBM ESD above 15kV and 8kV IEC-4100-4-2 contact discharge.


Powered by 3.3V power supply, The charge pump requires only four $0.1\mu F$ external capacitance to work at a rate of at least 120Kbps error-free data transmission, both of which can be independently enabled and closed. Each driver and receiver can be used independently.

www.unsemi.com.tw

Configuration

Functional Block

Limiting Values

Parameter	Symbol	Value	Unit
Power Supply	VCC	-0.3~+6	V
Positive Charge Pump Output	V+	VCC-0.3~+7	V
Negative Charge Pump Output	V-	+0.3~-7	V
V+ + V-	-	+13	V
Transmitter Input Pins	T1IN、T2IN	-0.3~+6	V
Receiver Input Pins	R1IN、R2IN	±25	V
Transmitter Output Pins	T1OUT、T2OUT	±13.2	V
Receiver Output Pins	R1OUT、R2OUT	-0.3~VCC+0.3	V
Operating Temperature Range	-	-40~85	°C
Storage Temperature Range	-	-60~150	°C
Soldering Temperature Range	-	300	°C
Continuous Power	SOP16	760	mW
	DIP16	840	mW

Limiting Values

The maximum limited parameter means that exceeding these values may cause unrecoverable damage to the device. Under these conditions, it is not conducive to the normal operation of the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The reference point for all voltages is the ground.

Pin Description

Pin Number	Pin Name	Function
1	C1+	Positive lead of C1 capacitor
2	V+	Positive charge pump output for storage capacitor only
3	C1-	Negative lead of C1 capacitor
4	C2+	Positive lead of C2 capacitor
5	C2-	Negative lead of C2 capacitor
6	V-	Negative charge pump output for storage capacitor only
7	T2OUT	RS232 line data output (to remote RS232 system)
8	R2IN	RS232 line data input (from remote RS232 system)
9	R2OUT	Logic data output (to UART)
10	T2IN	Logic data input (from UART)
11	T1IN	Logic data input (from UART)
12	R10UT	Logic data output (to UART)
13	R1IN	RS232 line data input (from remote RS232 system)
14	T1OUT	RS232 line data output (to remote RS232 system
15	GND	Ground
16	VCC	Power supply

Supply Current

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Supply Current with no Load	Isup	-	-	2	-	mA

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25°C, C1~C4=1uF)

ROHS

Logic Input Electrical Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Logic Control Low Level	VTTIN_L	T1IN、T2IN	-	-	0.8	V
Logic Control High Level	VTTIN_H	T1IN、T2IN	2	-	-	V
Logic Control Hysteresis	-	T1IN、T2IN	-	0.3	-	V
Input Logic Current	ITIN	T1IN、T2IN	-	-	±1	uA

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25 $^{\circ}$ C, C1 $^{\circ}$ C4=1uF)

Receiver Output Electrical Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Receiver Output Logic-Low Voltage	VROL	IOUT=1.6mA VCC=5V or 3.3V	-	-	0.4	V
Receiver Output Logic-High Voltage	VROH	IOUT=-0.5mA VCC=5V or 3.3V	VCC-0.6	VCC-0.1	-	V

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25 $^{\circ}$ C, C1 $^{\circ}$ C4=1uF)

Receiver Input Electrical Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Receiver Input Range	VRIN	-	-25	-	+25	V
Receiver Input Low	VRIL	VCC=3.3V	0.6	1.1	-	V
Threshold	VIII.	VCC=5.0V	0.8	1.5	-	V
Receiver Input High	VRIH	VCC=3.3V	-	1.5	2.4	V
Threshold		VCC=5.0V	-	1.9	2.4	V
Receiver Input Hysteresis	-	-	-	0.4	-	V
Receiver Input Impedance	RRIN	-	3.0	5.0	7.0	kΩ

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25°C, C1~C4=1uF)

ROHS

Transmitter Output Electrical Characteristics

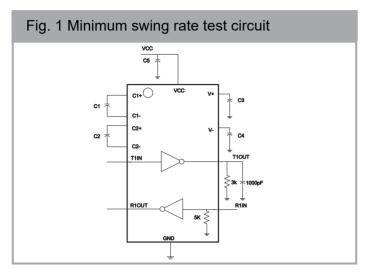
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Transmitter Output Swing	Vтоит	All output ports of transmitter connect 3kΩ load to ground	±4.0	-	±5.0	>
Transmitter Output Impedance	Rтоит	VCC=0V , Transmitter Input =±2V	300	-	-	Ω
Transmitter Short-Circuit Current	Itsc	-	-	-	±60	mA

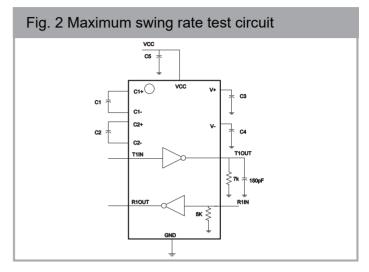
(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25 $^{\circ}$ C, C1 $^{\circ}$ C4=1uF)

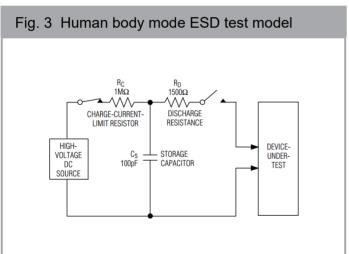
Switching Characteristics

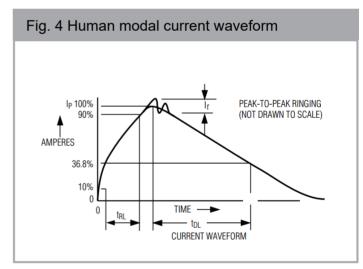
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Rate	Speed	RL=3kΩ, CL=1000pF	-	120	-	kbps
Receiver Propagation delay	trphl	CL=150pF	-	2.0	8.5	us
Neceiver i Topagation delay	trplh	0 <u>2</u> 100p.	-	2.0	8.5	us
trphl- trplh	-	-	-	150	-	ns
ttphl- ttpLh	-	-	-	150	-	ns
Transmitter Slew Rate	SR	RL= $3k\Omega\sim7k\Omega$, CL= $50pF\sim1000pF$ form- $3.0V$ to $3.0V$ or from $3.0V$ to $-3.0V$	4.0	-	30	V/us

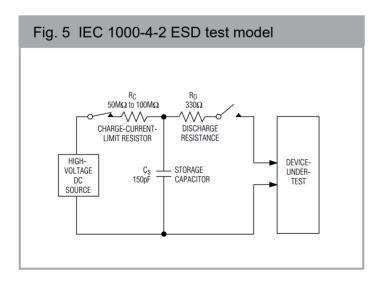
(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25°C, C1~C4=1uF)

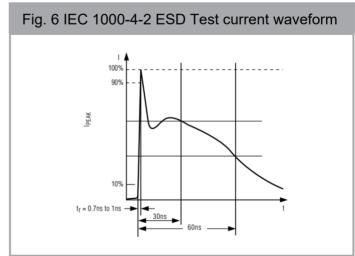

ESD protection


Parameter	Conditions	Min.	Тур.	Max.	Units
	НВМ	-	±15	-	KV
R1IN、R2IN T1OUT、T2OUT	Air discharge	-	±15	-	KV
	Contact discharge	-	±8	-	KV




ROHS


Test Circuit



ROHS

Summary

1 Dual Charge-Pump Operation

UN3232E has a two-way charge pump inside to support the chip's voltage conversion work. Dual-electric pump provides +5.5V and -5.5V output voltage in the range of $3.0 \sim 5.5V$, Each charge pump requires a capacitor(C1,C2) and an energy storage capacitor(C3,C4) to generate V+ and V- power supplies, as shown in Fig 7.

2 RS232 Transmitter

Convert the TTL/CMOS logic voltage to a voltage compatible with the EIA/TIA-232 standard. UN3232E Transmiter can guarantee 120kbps data rate under the worst operating conditions (Parallel load of 3kΩ resistor and 1000pf capacitor). Transmitter can drive multiple receivers in parallel. There is no pull-up resistance inside the input terminals T1IN and T2IN of UN3232E transmitter. If the transmitter is not used, the unused input terminals T1IN and T2IN can be connected to GND or VCC.

3 RS232 Receiver

The UN3232E has two separate receivers that convert the RS-232 signal to the CMOS logic output level.

4 ESD Protection

All pins of UN3232E adopt ESD protection structure, and all driver outputs and receiver inputs have additional electrostatic protection capability. It can withstand ±15kV ESD (HBM) discharge, contact discharge above ±8KV and air gap discharge above ±15kV. The ESD protection structure can withstand the impact of high voltage ESD under all conditions, including standard working mode and power-off mode.

5 Typical Application

Typical dual-Path application scenarios are shown in Fig 7, where the C1-C5 typical capacitance value is 0.1µF.

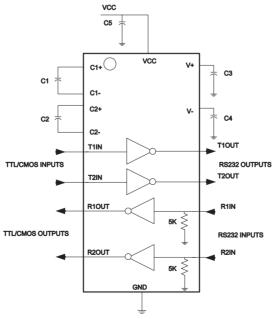
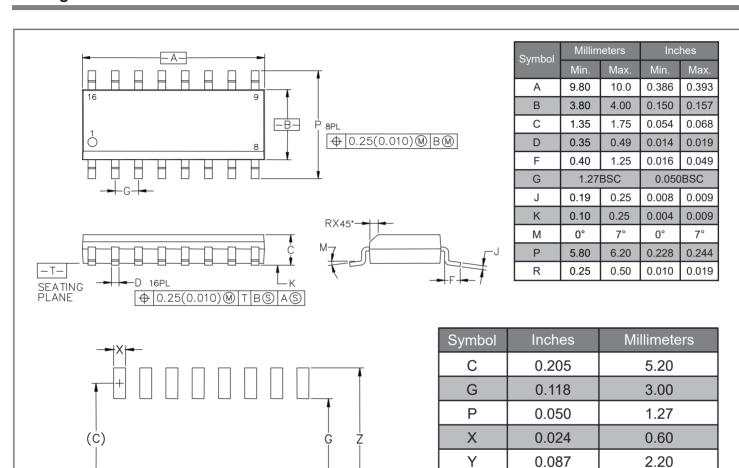



Fig7. Typical two-channel application scenario

ROHS

Package Outline

Ordering Information

Туре	Temperature	Packaging	Quantity
UN3232E	-40°C~85°C	SOP-16	2500pcs

Ζ

0.291

7.40

ROHS

Disclaimer

UNSEMI RESERVES THE RIGHT TO MAKE CHANGE ON OUR PRODUTS, PRODUCTS SPECIFICATION AND DATA WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

UN SEMICONDUCTOR LIMITED its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "UNSEMI")does not give any representations or warranties for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

In no event shall UNSEMI be liable for any indirect, incidental, punitive, special or consequential damages (including any and all implied warranties, warranties of fitness for particular purpose, non-infringement and merchantability.) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Statements regarding the suitability of products for certain types of applications are based on UNSEMI knowledge of typical requirements that are often placed on UNSEMI products in generic applications. Such statements are not binding, statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify UNSEMI's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Unless otherwise agreed in writing, UNSEMI product is not designed, authorized or warranted to be suitable for use in medical life-saving, or life-sustaining application, nor in applications where failure or malfunction of a UNSEMI product can reasonably be expected to result in personal injury, death or severe property or environmental damage. UNSEMI and its suppliers accept no liability for inclusion or use of UNSEMI products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

All referenced brands, product names, service names and trademarks are the property of their respective owners.